
Jonathan Bell, Adeel Bhutta, Mitch Wand

Khoury College of Computer Sciences

© 2022, released under CC BY-SA

CS 4530: Fundamentals of
Software Engineering
Module 15: Software Engineering & Security

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Define key terms relating to software/system security

• Describe some of the tradeoffs between security and other

requirements in software engineering

• Explain 5 common vulnerabilities in web applications and similar

software systems, and describe some common mitigations for each of

them.

• Explain why software alone isn’t enough to assure security

Security: Basic Vocabulary 1 (“CIA”)
Security as a set of non-functional requirements

• Confidentiality: is information disclosed to unauthorized individuals?

• Integrity: is code or data tampered with?

• Availability: is the system accessible and usable?

Security: Basic Vocabulary 2

• Threat: potential event that could compromise a security requirement

• Security architecture: a set of mechanisms and policies that we build into our
system to mitigate risks from threats

• Vulnerability: a characteristic or flaw in system design or implementation, or in
the security procedures, that, if exploited, could result in a security
compromise

• Attack: realization of a threat

Security isn't (always) free
In software, as in the real world…

• You just moved to a new house, someone just
moved out of it. What do you do to protect your
belongings/property?

• Do you change the locks?

• Do you buy security cameras?

• Do you hire a security guard?

• Do you even bother locking the door?

Security is about managing risk
Cost of attack vs cost of defense?

• Increasing security might:

• Increase development & maintenance cost

• Increase infrastructure requirements

• Degrade performance

• But, if we are attacked, increasing security might also:

• Decrease financial and intangible losses

• So: How likely do we think we are to be attacked in way X?

Threat Models help analyze these tradeoffs

• What is being defended?

• What resources are important to defend?

• What malicious actors exist and what attacks might they employ?

• What value can an attacker extract from a vulnerability?

• Who do we trust?

• What entities or parts of system can be considered secure and
trusted

• Plan responses to possible attacks

• Prioritize?

A Baseline Security Architecture (1)
Best practices applicable in most situations

• Trust:

• Developers writing our code (at least for the code they touch)

• Server running our code

• Popular dependencies that we use and update

• Don’t trust:

• Code running in browser

• Inputs from users

• Other employees (different employees should have access to different
resources)

A Baseline Security Architecture (2)
Best practices applicable in most situations

• Practice good security practices:

• Encryption (all data in transit, sensitive data at rest)

• Code signing, multi-factor authentication

• Encapsulated zones/layers of security (different people have access to
different resources)

• Log everything! (employee data accesses/modifications) (maybe)

• Bring in security experts early for riskier situations

OWASP Top Security Risks
All 10: https://owasp.org/www-project-top-ten/

• Broken authentication + access control

• Cryptographic failures

• Code injection (various forms - SQL/command line/XSS/XML/deserialization)

• Weakly protected sensitive data

• Using components with known vulnerabilities

https://owasp.org/www-project-top-ten/

Threats discussed in this lesson:

• Threat 1: Code that runs in an untrusted environment

• Threat 2: Inputs that are controlled by an untrusted user

• Threat 3: Bad authentication (of both sender and receiver!)

• Threat 4: Untrusted Inputs

• Threat 5: Software supply chain delivers malicious software

• Recurring theme: No silver bullet

Threat 1: Code that runs in an untrusted
environment
Authentication code in a web application

function checkPassword(inputPassword: string){

if(inputPassword === 'letmein'){

return true;

}

return false;

}

Should this go in our frontend code?

Threat 1: Code that runs in an untrusted
environment
Authentication code in a web application

function

checkPassword(inputPassword:

string){

if(inputPassword === 'letmein'){

return true;

}

return false;

}

Frontend

Backend

Trust boundary

We control this side

Users might be malicious

Fix: Move code to

back end (duh!)

Curses! Foiled Again!

Threat Category 1: Code that runs in an
untrusted environment
Access controls to database

Frontend

Database

We control this side

Users might be malicious

Database password

Trust boundary

Fix: Don’t distribute

sensitive credentials

Threat 2: Data controlled by a user flowing into
our trusted codebase

https://xkcd.com/327/

https://xkcd.com/327/

Threat 2: Data controlled by a user flowing into
our trusted codebase
Cross-site scripting (XSS) vulnerability

Trusted Server

Malicious

JavaScript

Response

Trusted Server

app.get('/transcripts/:id', (req, res) => {

// req.params to get components of the path

const {id} = req.params;

const theTranscript = db.getTranscript(parseInt(id));

if (theTranscript === undefined) {

res.status(404).send(`No student with id = ${id}`);

}

{

res.status(200).send(theTranscript);

}

});

/transcripts/4

Cross-site scripting (XSS) vulnerability

Threat 2: Data controlled by a user flowing into
our trusted codebase

Threat 2: Data controlled by a user flowing into
our trusted codebase
Cross-site scripting (XSS) vulnerability

Trusted Server

/transcripts/abcd

app.get('/transcripts/:id', (req, res) => {

// req.params to get components of the path

const {id} = req.params;

const theTranscript = db.getTranscript(parseInt(id));

if (theTranscript === undefined) {

res.status(404).send(`No student with id = ${id}`);

}

{

res.status(200).send(theTranscript);

}

});

Threat 2: Data controlled by a user flowing into
our trusted codebase
Cross-site scripting (XSS) vulnerability

Trusted Server

/transcripts/%3Ch1%3e…

app.get('/transcripts/:id', (req, res) => {

// req.params to get components of the path

const {id} = req.params;

const theTranscript = db.getTranscript(parseInt(id));

if (theTranscript === undefined) {

res.status(404).send(`No student with id = ${id}`);

}

{

res.status(200).send(theTranscript);

}

});

<h1>Congratulations!</h1>

You are the 1000th visitor to the

transcript site! You have been selected

to receive a free iPad. To claim your

prize <a

href='https://www.youtube.com/watch?v=D

LzxrzFCyOs'>click here!

<script language=“javascript”>

document.getRootNode().body.innerHTML=

'<h1>Congratulations!</h1>You are the

1000th visitor to the transcript site!

You have been selected to receive a

free iPad. To claim your prize <a

href="https://www.youtube.com/watch?v=D

LzxrzFCyOs">click here!’;

alert('You are a winner!’);

</script>

https://rest-example.covey.town/transcripts/%3Ch1%3ECongratulations!%3C/h1%3E%20You%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href='https:/www.youtube.com/watch?v=DLzxrzFCyOs'%3Eclick%20here!%3C/a%3E%3Cscript%20language=%22javascript%22%3Edocument.getRootNode().body.innerHTML='%3Ch1%3ECongratulations!%3C/h1%3EYou%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href=%22https://www.youtube.com/watch?v=DLzxrzFCyOs%22%3Eclick%20here!%3C/a%3E';alert('You%20are%20a%20winner!');%3C/script%3E

Threat 2: Data controlled by a user flowing into
our trusted codebase
Java code injection vulnerability in Apache Struts (@Equifax)

CVE-2017-5638 Detail
Current Description
The Jakarta Multipart parser in Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before 2.5.10.1 has incorrect exception handling and error-message

generation during file-upload attempts, which allows remote attackers to execute arbitrary commands via a crafted Content-
Type, Content-Disposition, or Content-Length HTTP header, as exploited in the wild in March 2017 with a Content-Type

header containing a #cmd= string.

Threat 2: Data controlled by a user flowing into
our trusted codebase
Java code injection vulnerability in Log4J

https://duo.com/decipher/apt41-compromised-six-state-government-networks
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html

CVE-2021-44228 Detail
Current Description
Apache Log4j2 2.0-beta9 through 2.15.0 (excluding security releases 2.12.2, 2.12.3, and 2.3.1) JNDI features used in configuration, log messages, and

parameters do not protect against attacker controlled LDAP and other JNDI related endpoints. An attacker who can control log
messages or log message parameters can execute arbitrary code loaded from LDAP servers when
message lookup substitution is enabled. From log4j 2.15.0, this behavior has been disabled by default. From version 2.16.0 (along with

2.12.2, 2.12.3, and 2.3.1), this functionality has been completely removed. Note that this vulnerability is specific to log4j-core and does not affect log4net,
log4cxx, or other Apache Logging Services projects.
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

https://duo.com/decipher/apt41-compromised-six-state-government-networks
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

Threat 3: Bad authentication

client page

(the “user”)
server

HTTP Request

HTTP Response

Do I trust that this request really

came from the user?Do I trust that this response

really came from the server?

Threat 3: Bad authentication

client page

(the “user”)
server

HTTP Request

HTTP Response

Do I trust that this request really

came from the user?Do I trust that this response

really came from the server?

HTTP Request

HTTP Response

malicious actor

“black hat”

Might be “man in the middle”

that intercepts requests and

impersonates user or server.

Fix (imperfect): Use

https and SSL

Threat 3: Bad authentication

Preventing the man-in-the-middle with SSL

client page

(the “user”)
server

HTTP Request

HTTP Response

amazon.com certificate

(AZ’s public key + CA’s sig)

http://amazon.com

Preventing the man-in-the-middle with SSL

client page

(the “user”)
server

HTTP Request

HTTP Response

amazon.com certificate

(AZ’s public key + CA’s sig)

Encrypted request

Encrypted response

Curses! Foiled Again!

http://amazon.com

SSL: A perfect solution?
Certificate authorities

• A certificate authority (or CA) binds some public key to a real-world entity that
we might be familiar with

• The CA is the clearinghouse that verifies that amazon.com is truly
amazon.com

• CA creates a certificate that binds amazon.com's public key to the CA’s public
key (signing it using the CA’s private key)

http://amazon.com
http://amazon.com
http://amazon.com

Certificate Authorities issue SSL Certificates
Certificate Authority

Amazon

amazon.com

public key

CA private key

amazon.com

private key
CA public key

Some real-world

proof that we are

really amazon.com

My Laptop

CA private key
amazon.com certificate

(AZ’s public key + CA’s sig)

amazon.com

public key

amazon.com certificate

(AZ’s public key + CA’s sig)

CA public key

http://amazon.com
http://amazon.com
http://amazon.com
http://amazon.com
http://amazon.com

Certificate Authorities are Implicitly Trusted

• Note: We had to already know the CA's public key

• There are a small set of “root” CA’s (think: root DNS servers)

• Every computer/browser is shipped with these root CA public keys

Should Certificate Authorities be Implicitly
Trusted?
Signatures only endorse trust if you trust the signer!

• What happens if a CA is compromised,
and issues invalid certificates?

• Not good times.

You can do this for your website for free
letsencrypt.com

Threat 4: Untrusted Inputs
Restrict inputs to only “valid” or “safe” characters

• Special characters like <, >, ‘, “ and `
are often involved in exploits involving
untrusted inputs

Fix: Always use input

validation

Other ways to sanitize your inputs:

• Sanitize inputs – prevent them from being executable

• Avoid use of languages or features that can allow for remote code execution,
such as:

• eval() in JS – executes a string as JS code

• Query languages (e.g. SQL, LDAP, language-specific languages like OGNL
in java)

• Languages that allow code to construct arbitrary pointers or write beyond a
valid array index

Threat 5: Software Supply Chain
Do we trust our own code? Third-party code provides an attack vector

https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes

https://www.theverge.com/2021/1/26/22248631/solarwinds-hack-

cybersecurity-us-menn-decoder-podcast

https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
https://www.theverge.com/2021/1/26/22248631/solarwinds-hack-cybersecurity-us-menn-decoder-podcast

Threat 5: The software supply chain has many
points of weakness

In-house code

External

dependencies

Build process
Operating

environment

Distribution

process

(including

updates)

Common vulnerabilities in top 1% of npm
packages
2021 NCSU/Microsoft Study

• Package inactive or deprecated, yet still in use

• No active maintainers

• At least one maintainer with an inactive (purchasable) email domain

• Too many maintainers or contributors to make effective maintenance or code
control

• Maintainers are maintaining too many packages

• Many statistics/combinations: see the paper for details.
“What are Weak Links in the npm Supply Chain?” By: Nusrat Zahan, Thomas

Zimmermann, Patrice Godefroid, Brendan Murphy, Chandra Maddila, Laurie Williams

https://arxiv.org/abs/2112.10165

https://arxiv.org/abs/2112.10165

A possible attack…
2021 NCSU/Microsoft Study

“What are Weak Links in the npm Supply Chain?” By: Nusrat Zahan, Thomas

Zimmermann, Patrice Godefroid, Brendan Murphy, Chandra Maddila, Laurie Williams

https://arxiv.org/abs/2112.10165

https://arxiv.org/abs/2112.10165

Threat Mitigation: Software Supply Chain
Process-based solutions for process-based problems

• External dependencies

• Audit all dependencies and their updates before applying them

• In-house code

• Require developers to sign code before committing, require 2FA for signing keys,
rotate signing keys regularly

• Build process

• Audit build software, use trusted compilers and build chains

• Distribution process

• Sign all packages, protect signing keys

• Operating environment

• Isolate applications in containers or VMs

Building a security architecture

• Security architecture is a set of mechanisms and policies that we build into our
system to mitigate risks from threats

• Vulnerability: a characteristic or flaw in system design or implementation, or in
the security procedures, that, if exploited, could result in a security
compromise

• Threat: potential event that could compromise a security requirement

• Attack: realization of a threat

It’s a management

problem!!

Which threats to protect against, at what cost?

• Performance:

• Encryption is not free;

• C may be faster than Typescript, but is vulnerable to buffer overflows, etc.

• Expertise:

• It is easy to try to implement these measures, it is hard to get them right

• Financial:

• Implementing these measures takes time and resources

Consider various costs:

Broken Authentication + Access Control

• Use SSL.

• Implement multi-factor authentication

• Implement weak-password checks

• Apply per-record access control

• Harden account creation, password reset pathways

• The software engineering approach: rely on a
trusted component

https://auth0.com

Auth0

OWASP #1
But how to get your

developers to do this?

Always.

It’s a management

problem!!

https://auth0.com/

Cryptographic Failures

• Enforce encryption on all communication

• Validate SSL certificates; rotate certificates
regularly

• Protect user-data at rest (passwords, credit
card numbers, etc)

• Protect application “secrets” (e.g. signing
keys)

OWASP #2

“A Measurement Study of Google Play,” Viennot et al, SIGMETRICS ‘14

But how to get your

developers to do this.

Always.

It’s a management

problem!!

Do developers pay attention? Do they have
good reason not to?

• Industrial study of secret detection tool in a large software services company
with over 1,000 developers, operating for over 10 years

• What do developers do when they get warnings of secrets in repository?

• 49% remove the secrets; 51% bypass the warning

• Why do developers bypass warnings?

• 44% report false positives, 6% are already exposed secrets, remaining are
“development-related” reasons, e.g. “not a production credential” or “no
significant security value”

“Why secret detection tools are not enough: It’s not just about false positives - An industrial case study”
Md Rayhanur Rahman, Nasif Imtiaz, Margaret-Anne Storey & Laurie Williams

https://link.springer.com/article/10.1007/s10664-021-10109-y

Is it a management

problem or a tool

problem?

https://link.springer.com/article/10.1007/s10664-021-10109-y

Code Injection
OWASP #3

• Sanitize user-controlled inputs (remove
HTML)

• Use tools like LGTM to detect vulnerable
data flows (insert into commit workflow?)

• Use middleware that side-steps the
problem (e.g. return data as JSON, client
puts that data into React component)
(how to get engineers to actually do this?)

Detecting Weaknesses in Apps with Static Analysis

LGTM + CodeQL

https://lgtm.com

But tools have both

false positives and

false negatives

https://lgtm.com/

Weakly Protected Sensitive Data
OWASP #4

• Classify your data by sensitivity

• Encrypt sensitive data - in transit and at rest

• Make a plan for data controls, stick to it

• Software engineering fix: can we avoid storing sensitive data?

• Payment processors: Stripe, Square, etc

Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Define key terms relating to software/system security

• Describe some of the tradeoffs between security and other

requirements in software engineering

• Explain 5 common vulnerabilities in web applications and similar

software systems, and describe some common mitigations for each of

them.

• Explain why software alone isn’t enough to assure security

