CS 4530: Fundamentals of
Software Engineering

Module 15: Software Engineering & Security

Jonathan Bell, Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences
© 2022, released under CC BY-SA

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

By the end of this lesson, you should be able to...

* Define key terms relating to software/system security

* Describe some of the tradeoffs between security and other
requirements In software engineering

* Explain 5 common vulnerabilities in web applications and similar
software systems, and describe some common mitigations for each of

them.
* Explain why software alone isn't enough to assure security

Security: Basic Vocabulary 1 (“CIA”)

Security as a set of non-functional requirements

* Confidentiality: Is information disclosed to unauthorized individuals?
* Integrity: Is code or data tampered with?

* Avallabllity: is the system accessible and usable?

Security: Basic Vocabulary 2

* Threat: potential event that could compromise a security requirement

* Security architecture: a set of mechanisms and policies that we build into our
system to mitigate risks from threats

* Vulnerabllity: a characteristic or flaw In system design or implementation, or In
the security procedures, that, If exploited, could result in a security
compromise

e Attack: realization of a threat

Security iIsn't (always) free

In software, as in the real world...

°* You just moved to a new house, someone just
moved out of it. What do you do to protect your
belongings/property?

°* Do you change the locks?

* Do you buy security cameras?

°* Do you hire a security guard?

°* Do you even bother locking the door?

Security Is about managing risk

Cost of attack vs cost of defense?

* |[ncreasing security might:
* Increase development & maintenance cost
* Increase Infrastructure requirements
* Degrade performance
* But, If we are attacked, increasing security might also:
* Decrease financial and intangible losses

* So: How likely do we think we are to be attacked in way X?

Threat Models help analyze these tradeoffs
Threat Modeling (&

* What is being defended? fhreat
* What resources are important to defend?

* What malicious actors exist and what attacks might they employ?

* What value can an attacker extract from a vulnerability?

Vulnerabilit
* \Who do we trust? !

- | Application
* What entities or parts of system can be considered secure and

trusted Vulnerability

* Plan responses to possible attacks

* Prioritize?
Response Response

A Baseline Security Architecture (1)

Best practices applicable in most situations

* Trust:
* Developers writing our code (at least for the code they touch)
* Server running our code
* Popular dependencies that we use and update
°* Don't trust:
* Code running in browser
* Inputs from users

* Other employees (different employees should have access to different
resources)

A Baseline Security Architecture (2)

Best practices applicable in most situations

* Practice good security practices:
* Encryption (all data in transit, sensitive data at rest)
* Code signing, multi-factor authentication

* Encapsulated zones/layers of security (different people have access to
different resources)

* Log everything! (employee data accesses/modifications) (maybe)
* Bring In security experts early for riskier situations

OWASP Top Security Risks
All 10: https://owasp.org/www-project-top-ten/

* Broken authentication + access control
* Cryptographic failures

* Code Injection (various forms - SQL/command line/XSS/XML/deserialization)

* Weakly protected sensitive data

* Using components with known vulnerabillities

https://owasp.org/www-project-top-ten/

Threats discussed In this lesson:

* Threat 1: Code that runs in an untrusted environment

* Threat 2: Inputs that are controlled by an untrusted user

* Threat 3: Bad authentication (of both sender and receiver!)
* Threat 4: Untrusted Inputs

* Threat 5: Software supply chain delivers malicious software

* Recurring theme: No silver bullet

Threat 1: Code that runs 1n an untrusted

environment
Authentication code in a web application

function checkPassword (inputPassword: string) {
i1f (1nputPassword === 'letmein') {
return true;

J

return false;

J

Should this go in our frontend code?

Threat 1: Code that runs 1n an untrusted

environment
Authentication code in a web application

function
checkPassword (1nputPassword:
string) {

i1f (1nputPassword === 'letmein') {

return true;

}

return false;

We control this side

‘IIE%%H%HHIII

Fix: Move code to
back end (duh!)

Threat Category 1: Code that runs In an

untrusted environment
Access controls to database

Frontend
Database password :

Users might be malicious
Trust boundary =— =— =— = = = == — — — — — — - -

We control this side

Fix: Don't distribute
sensitive credentials

Threat 2: Data controlled by a user flowing into
our trusted codebase

HI, THIS 1S OH, DEAR - DID HE

DID YOU REALLY WELL, WEVE LOST THIS

YOUR SONS SCHOOL. | BREAKSOMETHING? | NAME YOUR SON YEARS STUDENT RECORDS.
WERE HAVING SOME IN A WAY Robert'); DROP I HOPE YOURE HAPPY.
(OMPUTER TROUBLE. / TABLE Students; -~ 7 ‘]l

i%m

Sl

~ OH. YES. LUTTLE
ROBRY TABLES,
WE CALL HIM.

AND I HOPE

“~ YOUVE LEARNED
TO SANMIZE YOUR
DATARASE INPUTS.

https://xkcd.com/327/

https://xkcd.com/327/

Threat 2: Data controlled by a user flowing into

our trusted codebase
Cross-site scripting (XSS) vulnerability

Malicious

JavaScript
Response

[NN @ https:// mpl . X +
L N @ https://rest-example.covey.tov X +
“ G @& rest-exampl y.town/tra w N e
& C' @ rest-example.covey.town/trans... Yr W e :
{{ ":{"s Ogtfa} o }
[":"De] o
Congratulations!

You are the 1000th visitor to the transcript site! You have been selected to
receive a free 1Pad. To claim your prize click here!

Threat 2: Data controlled by a user flowing into

our trusted codebase
Cross-site scripting (XSS) vulnerability

app.get('/transcripts/:id', (req, res) => {
// reqg.params to get components of the path
const {1d} = reqg.params;
O const theTranscript = db.getTranscript(parselnt(id));

if (theTranscript === undefined) ({

[transcripts/4 res.status (404) .send(No student with id = S${id} ");

{
res.status (200) .send (theTranscript);

® O 0® @ ntpsy/ mpl o X 4
& C a t mple.covey.town/trans... Y& % e
{"student":{"studentID":4, "studentName":"casey"}, "grades":

r
[{"course":"DemoClass", "grade":100}]}

Threat 2: Data controlled by a user flowing into

our trusted codebase
Cross-site scripting (XSS) vulnerability

app.get ('/transcripts/:id', (req, res) => {
// reqg.params to get components of the path

const {1d} = reqg.params;
const theTranscript = db.getTranscript(parselInt(id));

if (theTranscript === undefined) {

/transcripts/abcd res.status (404) .send(No student with id = ${id}");

—

res.status (200) .send (theTranscript);

e

[NN @ https://rest-example.covey.tov X +
& C @ rest-example.covey.town/trans... Yt N e P

No student with id = abcd

Threat 2: Data controlled by a user flowing into

our trusted codebase
Cross-site scripting (XSS) vulnerability

app.get ('/transcripts/:id', (req, res) => {
// req.params to get components of the path

const {1d} = reqg.pagams;
const theTranscripf db.getTranscript (parselInt(id));
if (theTranscript undefined) {

res.status (404) (No student with id = s${id}) ;

/transcrlpts/%30h1 %3e..

res.status

) <hl>Congratulations!</hl>
1) ; You are the 1000th visitor to the
transcript site! You have been selected
) .” to recelve a free 1Pad. To claim your
00 C https://rest-example.covey.tov X + 00 & https://rest-example.covey.tov X + or l 7o <a
< X @& rest-example.covey.town/trans... Y W e P < C @ rest-example.covey.town/trans... Y ® e P href=" https 2/ /wWww . ycutube .com/watch?v=D
| | | ' : [
rest-example.covey.town says | | Congratulations' LZXI‘ZF(-:YOS >click he]?e I -
. | | * <script language="“javascript”>
You are a winner! ; | ; .
| ~ You are the 1000th visitor to the transcript site! You have been selected to document. getRoOtNO de () . bOdy . 1nnerHTML=
“ receive a free iPad. To claim your prize click here! '<h1>CongratulationS l</hl>You are the

1000th visitor to the transcript site!
You have been selected to receive a
free 1Pad. To claim your prize <a
href="https://www.youtube.com/watch?v=D
LzxrzFCyOs'">click here!’;

alert ('You are a winner!’);

</secript>

Waiting for rest-example....

https://rest-example.covey.town/transcripts/%3Ch1%3ECongratulations!%3C/h1%3E%20You%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href='https:/www.youtube.com/watch?v=DLzxrzFCyOs'%3Eclick%20here!%3C/a%3E%3Cscript%20language=%22javascript%22%3Edocument.getRootNode().body.innerHTML='%3Ch1%3ECongratulations!%3C/h1%3EYou%20are%20the%201000th%20visitor%20to%20the%20transcript%20site!%20You%20have%20been%20selected%20to%20receive%20a%20free%20iPad.%20To%20claim%20your%20prize%20%3Ca%20href=%22https://www.youtube.com/watch?v=DLzxrzFCyOs%22%3Eclick%20here!%3C/a%3E';alert('You%20are%20a%20winner!');%3C/script%3E

Threat 2: Data controlled by a user flowing into

our trusted codebase
Java code injection vulnerability in Apache Struts (@Equifax)

EQU’FAX ' @ English § Return to equifax.com»

2017 Cybersecurity Incident &
Important Consumer Ipfaea

NEWS

Equifax Says Cybersecurity Breach Has Cost

Need help? Contact Us [Billion

000
I

CVE-2017-5638 Detail
Current Description

The Jakarta Multipart parser in Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before 2.5.10.1 has incorrect exception handling and error-message
generation during file-upload attempts, which allows remote attackers to @Xecute arbitra ry commands via a crafted Content-

Type, Content-Disposition, or Content-Length HTTP header, as exploited in the wild in March 2017 with a Content-Type

header containing a #cmd= string.

Threat 2: Data controlled by a user flowing into

our trusted codebase
Java code Injection vulnerability in Log4J

Extremely Critical Log4J Vulnerability Mar 8, 2022 Lrrrreeee s

Leaves Much of the Internet at Risk n T
December 10,2021 & Ravie Lakshmanan A PT41 Co M P RO M IS E

CVE-2021-44228 Detail

Current Description
Apache Log4j2 2.0-beta9 through 2.15.0 (excluding security releases 2.12.2, 2.12.3, and 2.3.1) JNDI features used in configuration, log messages, and

parameters do not protect against attacker controlled LDAP and other JNDI related endpoints. An attacker who can control log
messages or log message parameters can execute arbitrary code loaded from LDAP servers when

The Apache Software Fo INE€SSAZE Iookup substitution is enabled. From logsj 2.15.0, this behavior has been disabled by default. From version 2.16.0 (along with

actively exploited zero-da 2.12.2, 2.12.3, and 2.3.1), this functionality has been completely removed. Note that this vulnerability is specific to log4j-core and does not affect log4net,
Apache Log4j Java-basec log4cxx, or other Apache Logging Services projects.
execute malicious code a https://nvd.nist.gov/vuln/detail/CVE-2021-44228

systems.

The APT41 group compromised at least six U.S. state government
networks between May and February in a “deliberate campaign” that

https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html reflects new aftack vectors and retooling by the prolific Chinese state- _
spofidtipsdfdailo.com/decipher/apt41-compromised-six-state-government-networks

https://duo.com/decipher/apt41-compromised-six-state-government-networks
https://thehackernews.com/2021/12/extremely-critical-log4j-vulnerability.html
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

Threat 3: Bad authentication

HTTP Request

O

HT TP Response

client page
‘@ 2 server
(the “user”)
_ Do | trust that this request really
Do | trust that this response came from the user?
really came from the server? — —

B —— EE—

Threat 3: Bad au’ wight be “man in the middie’

that intercepts requests and
Impersonates user or server.

0 — ——— —

HTTP Request

HTTP Request

Fix (imperfect): Use
https and SSL

HTTP Response

HTTP Response

malicious actor

client page “ ”
(the “user”) black hat server
Do | trust that thi Do | trust that this request really
O | LIUSE that This TESpOnse came from the user?
really came from the server?

*

Threat 3: Bad authentication

Preventing the man-in-the-middle with SSL

O

H

client page .‘

(the “user”) amazon.com certificate
(AZ’s public key + CA’s sig)

HTTP Request

HT TP Response

server

http://amazon.com

Preventing the man-in-the-middle with SSL

HTTP Request

O EW

Curses! Fodec’ Agam‘

HTTP Respon”
Encrypted response

A
Your connection is not private .‘ server

Attackers might be trying to steal your information from 192.168.18.4 (for example, passwords, amazon.com C ert | fl C ate
messages, or credit cards). Learn more (AZ,S pu bl ic key + CA,S Sig)

NET::ERR_CERT_AUTHORITY_INVALID

http://amazon.com

SSL: A perfect solution?

Certificate authorities

* A certificate authority (or CA) binds some public key to a real-world entity that
we might be familiar with

°* The CA Is the clearinghouse that verifies that amazon.com is truly
amazon.com

* CA creates a certificate that binds amazon.com's public key to the CA’s public
key (signing it using the CA'’s private key)

http://amazon.com
http://amazon.com
http://amazon.com

Certificate Authorities iIssue SSL Certificates

Certificate Authority

M

amazon.com certificate
(AZ’s public key + CA'’s siq)

My Laptop

Some - yorld

proof tb [‘e are
really amazon.com

http://amazon.com
http://amazon.com
http://amazon.com
http://amazon.com
http://amazon.com

Certificate Authorities are Implicitly Trusted

* Note: We had to already know the CA's public key
* There are a small set of “root” CA's (think: root DNS servers)

* Every computer/browser is shipped with these root CA public keys

Safari is using an encrypted connection to cs.gmu.edu.

Encryption with a digital certificate keeps information private as it's sent to or from the

_ ﬁ https website cs.gmu.edu.
L e

=, USERTrust RSA Certification Authority
“ L InCommon RSA Server CA

= - cs.gmu.edu

cs.gmu.edu
' lssued by: InCommon RSA Server CA
Expires: Saturday, December 1, 2018 at 5:59:59 PM Eastern Standard Time

* Trust
» Details

? Hide Certificate 0K

Should Certificate Authorities be Implicitly

Trusted?
Signatures only endorse trust If you trust the signer!

* What happens if a CA Is compromised, Security
and issues invalid certificates? Fuming Google tears Symantec a new
one over rogue SSL certs
* Not good times. We've got just the thing for you, Symantec ...
By lain Thomson in San Francisco 29 Oct 2015 at 21:32 36() SHARE Y
Security

Comodo-gate hacker brags about
forged certificate exploit

Tiger-blooded Persian cracker boasts of mighty
exploits

Gooale has read the riot act to Svmantec. scoldina the securitv biz for its

You can do this for your website for free

letsencrypt.com

n Let,s Encrypt Documentation Get Help Donate - About Us ~ Languages @ v

A nonprofit Certificate Authority providing TLS
certificates to 300 million websites.

We were awarded the Levchin Prize for Real-World Cryptography! Learn more

e Started] [Sponsor

Threat 4: Untrusted Inputs

Restrict inputs to only “valid” or “safe” characters

L

* Special characters like <, >, ', “and

are often involved in exploits involving Create password
u ntrUSted |n puts Please create your password. Click here to read our password security policy.

Your password needs to have:

v’ At least 8 characters with no space

v’ At least 1 upper case letter

FIX: Always use iﬂpUt v’ Al least 1 number

At least 1 of the following special characters from | # $ A * (other special characters are not

Va.l I d a.tl O n supported)

A Your password must contain a minimum of 8 characters included with at
least 1 upper case letter, 1 number, and 1 special character from !, # $, A,
and * (other special characters are not supported).

Other ways to sanitize your Inputs:

* Sanitize inputs — prevent them from being executable

* Avoid use of languages or features that can allow for remote code execution,
such as:

* eval() In JS — executes a string as JS code

* Query languages (e.g. SQL, LDAP, language-specific languages like OGNL
In java)

* Languages that allow code to construct arbitrary pointers or write beyond a
valid array index

Threat 5: Software Supply Chain

Do we trust our own code? Third-party code provides an attack vector

@ ESL"’]t Q Search the docs... User guide~ Deve

Postmortem for Malicious
Packages Published on July 12th,
2018

Summary

On July 12th, 2018, an attacker compromised the npm account of an ESLint maintainer
and published malicious versions of the eslint-scope and eslint-config-
eslint packages to the npm registry. On installation, the malicious packages
downloaded and executed code from pastebin.com which sent the contents of the
user's .npmrc file to the attacker. An .npmrc file typically contains access tokens for
publishing to npm.

The malicious package versions are eslint-scope@3.7.2 and eslint-config-
eslint@5.0.2, both of which have been unpublished from npm. The pastebin.com
paste linked in these packages has also been taken down.

npm has revoked all access tokens issued before 2018-07-12 12:30 UTC. As a result, all
access tokens compromised by this attack should no longer be usable.

The maintainer whose account was compromised had reused their npm password on
several other sites and did not have two-factor authentication enabled on their npm
account.

We, the ESLint team, are sorry for allowing this to happen. We

https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes

T N T =TT T T T T T T %I =TT

HARD LESSONS OF THE SOLARWINDS HACK

Cybersecurity reporter Joseph Menn on the massive
breach the US didn’t see coming

By l

| Jan 26, 2021, 9:13am EST

f Y (77 sHare

into a network

n December, details came out on one of the most massive
breaches of US cybersecurity in recent history. A group of
hackers, likely from the Russian government, had gotten

manaaement comopanv called SolarWinds and

infiltrated its cu

https://www.theverge.com/2021/1/26/22248631/solarwinds-hack-

to breach ever

cybersecurity-us-menn-decoder-podcast

TP N Py s il G2 = G = IC\ TR Sareese e =Nioin = peflte= Ses =Sngiiosetn . SSagiess =k

https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
https://www.theverge.com/2021/1/26/22248631/solarwinds-hack-cybersecurity-us-menn-decoder-podcast

Threat 5. The software supply chain has many
points of weakness

-/ =t

Common vulnerabilities Iin top 1% of npm
packages

2021 NCSU/Microsoft Study
* Package inactive or deprecated, yet still in use

* No active maintainers
* At least one maintainer with an inactive (purchasable) email domain

* Too many maintainers or contributors to make effective maintenance or code
control

* Maintainers are maintaining too many packages

* Many statistics/combinations: see the paper for detalls.

“What are Weak Links in the npm Supply Chain?” By: Nusrat Zahan, Thomas
Zimmermann, Patrice Godefroid, Brendan Murphy, Chandra Maddila, Laurie Williams
https://arxiv.org/abs/2112.10165

https://arxiv.org/abs/2112.10165

A possible attack...

2021 NCSU/Microsoft Study

14,892
Packages

popular
packages

o

5,645
packages

— %

Inactive
packages

_J

_

3,313
maintainers
Maintainer
Email
address

e)

1,108
domains

= .

Domain
track in
registrar

“What are Weak Links in the npm Supply Chain?” By: Nusrat Zahan, Thomas
Zimmermann, Patrice Godefroid, Brendan Murphy, Chandra Maddila, Laurie Williams
https://arxiv.org/abs/2112.10165

\

15 domains

Purchase

alter the

MX record
8

domain and

~N

Access to 891

~packages

J

N,

Take over
npm
account

https://arxiv.org/abs/2112.10165

Threat Mitigation: Software Supply Chain

Process-based solutions for process-based problems

* External dependencies
* Audit all dependencies and their updates before applying them
* In-house code

* Require developers to sign code before committing, require 2FA for signing keys,
rotate signing keys regularly

* Build process

* Audit build software, use trusted compilers and build chains
* Distribution process

* Sign all packages, protect signing keys
* Operating environment

* |solate applications in containers or VMs

Building a security architecture

* Security architecture Is a set of mechanisms and policies that we build into our
system to mitigate risks from threats O

It's a management
problem!!

Which threats to protect against, at what cost?

Consider various costs:

* Performance:

* Encryption Is not free;

* C may be faster than Typescript, but is vulnerable to buffer overflows, etc.
* EXpertise:

* |tIs easy to try to Implement these measures, it Is hard to get them right

* Financial:

* Implementing these measures takes time and resources

Broken Authentication + Access Control

OWASP #1
But how to get your
1S7?
. Use SSI developers to do this”
Always.
* Implement multi-factor authentication
AithO
* Implement weak-password checks It's a management
| |
* Apply per-record access control problem!!

v e Customer Publish

* Harden account creation, password reset pathways

* The software engineering approach: rely on a U swecstuly Unrsodated | serasnedacees
trusted component

https://authO.com

https://auth0.com/

Cryptographic Fallures

OWASP ;

* Enforce encryption on all communication

* Validate SSL certificates: rotate certificate

regularly

* Protect user-data at rest (passwords, cred
card numbers, etc)

* Protect application “secrets” (e.g. signing

keys)

2

developers to do this. = —

% 99.8%

Table 5§ ial may consist of an ID
ways.

y Flaydrone
AAAAA 10 files per page j

416 Files / 8.98 MB (ES took 0.131s)

- - | It's a management
problem”

Trigonometry Definition.java 8akIaBbl/2ZmlpdLWygTbNPFkeNN533CAvtug4dRLPDo5ZtckU/IFBRAVo1/HxGSE9jplj3skcexk75t0gUIr/sIX18nV+TxPMHBLAGQO
/BleIFB+AT4KthpkKP29+cVL8]IDAAK]Rk]]aKAAAAAAAAAAAAUk4u6RWY2206hoeHh5XP52UONKRXXanIwUOA4cPH9ahO 444444

| —— — —

ttttt

protected AmazonSimpleDBClient sdbClient = new AmazonSimpleDBClient(new BasicAWSCredentials("AKIA

private String awsAccessKeyId = "AKIA

Figure 9: PLAYDRONE’s web interface to search decompiled sources showing Amazon Web Service tokens found in 130 ms.

“A Measurement Study of Google Play,” Viennot et al, SIGMETRICS ‘14

Do developers pay attention? Do they have
good reason not to?

* Industrial study of secret detection tool in a large software services company
with over 1,000 developers, operating for over 10 years

* What do developers do when they get warnings of s€ ¢ it 5 management

* 49% remove the secrets; 51% bypass the warning| problem or a tool
problem?

* Why do developers bypass warnings?

* 449% report false positives, 6% are already exposed secrets, remaining are
“development-related” reasons, e.g. “not a production credential” or “no
significant security value”

“Why secret detection tools are not enough: It’s not just about false positives - An industrial case study”
Md Rayhanur Rahman, Nasif Imtiaz, Margaret-Anne Storey & Laurie Williams
https://link.springer.com/article/10.1007/s10664-021-10109-y

https://link.springer.com/article/10.1007/s10664-021-10109-y

Code Injection
OWASP #3

1 path available

* Sanitize user-controlled INnputs (remove | receacosssice srptin
HTML)

* Use tools like LGTM to detect vulnerable @ R
data flows (insert into commit workflow?) |

const {id} = req.params;
console.log(Handling GET /transcripts/:id id = ${id}’);
const theTranscript = db.getTranscript(parselInt(id));

* Use middleware that side-steps the
problem (e.qg. return data as JSON, client | stpz.
puts that data into React component) = e

(how to get engineers to actually do this?) = e oo,

res.status(404).send(No student with id = ${id});

Cross-site scripting vulnerability due to user-provided value.

} else {
res.status(200).send(theTranscript);

) 71-169

Detecting Weaknesses In Apps with Static Analysis
LGTM + CodeQL

@00 [J < > 0 0 & lgtm.com C ©® M +

‘00 Igtm Help

Query console Project lists My alerts .&1 Jonathan Bell

Alerts 16

History Compare Integrations Queries

By default, only the files that also appear in the Alerts tab are listed here.

Files classified as non-standard, such as test code or generated files, are shown only W
xt storage of sensitive information

E information stored without encryption or hashing can expose it to an attacker.
Alert filters

No filter selected B fa.l S e p O S I t I Ve S a N d Ixt logging of sensitive information

sensitive information without encryption or hashing can expose it to an attacker.

ide cross-site scripting

user input directly to the DOM allows for a cross-site scripting vulnerability.
Severity Query Tag Show excluded files (?)

ide URL redirect

Client-side URL redirection based on unvalidated user input may cause redirection to malicious
web sites.

Source root

Code injection

Q Interpreting unsanitized user input as code allows a malicious user arbitrary code execution.
Name

Download of sensitive file through insecure connection

Downloading executables and other sensitive files over an insecure connection opens up for
potential man-in-the-middle attacks.

@ public

R 16 756

https://Ilgtm.com

https://lgtm.com/

Weakly Protected Sensitive Data
OWASP #4

* Classify your data by sensitivity

* Encrypt sensitive data - Iin transit and at rest

* Make a plan for data controls, stick to It

* Software engineering fix: can we avoid storing sensitive data?

* Payment processors: Stripe, Square, etc

Learning Objectives for this Lesson

By the end of this lesson, you should be able to...

* Define key terms relating to software/system security

* Describe some of the tradeoffs between security and other
requirements In software engineering

* Explain 5 common vulnerabilities in web applications and similar
software systems, and describe some common mitigations for each of

them.
* Explain why software alone isn't enough to assure security

